
Description Logics for Documentation

Carlo Meghini

Consiglio Nazionale delle Ricerche
Istituto di Scienza e Tecnologie della Informazione, Pisa, Italy

carlo.meghini@isti.cnr.it

Abstract. Much of the activity in a digital library revolves around col-
lecting, organizing and publishing knowledge about the resources of the
library, in the form of metadata records. In order to document such
activity, digital librarians need to express knowledge about the meta-
data records they produce. This knowledge, which we call documen-
tation knowledge, may express e.g., provenance, trustability, or access
restrictions of the records. Today, documentation knowledge is mostly
represented in digital libraries via RDF. We propose a new type of infor-
mation system, called documentation system, as a basic component of a
digital library allowing to represent and reason about both domain and
documentation knowledge in an expressive language such as OWL.

1 Introduction

In a digital library, it is often necessary to represent and reason about two dif-
ferent kinds of knowledge. One kind is domain knowledge, which in is typically
embodied in metadata and ontologies, used by the end-users, for instance to
discover and access the resources of the library. The other kind of knowledge
concerns domain knowledge and is used by digital librarians in order to manage
the resources of the library. For instance, a digital librarian might want to de-
scribe the provenance, or the degree of trust or the access policy of a metadata
record. We call this latter kind of knowledge as documentation knowledge, since
documentation is one of the main reasons that brings it into life. Documentation
knowledge is a primary matter dealt with by curators in libraries and archives.
In general, it shows up in any organization that devotes resources to the docu-
mentation of artifacts, events, users, services and in general any resource that is
of value to the organization. Its scope of application is therefore quite ample.

Documentation knowledge consists of factual and ontological statements about
individuals, concepts and relations of the domain of dicourse, and as such it can
be expressed and reasoned upon using standard logics, such as OWL [10]. How-
ever, a problem arises if documentation knowledge is to be used together with
domain knowledge, as it happens in digital libraries. The problem is due to the
fact that the individuals of documentation knowlegde are domain knowledge
statements, and in order to express knowledge about resources and about the
statements used to describe such resources in the same language, one needs very
powerful languages, whose expressive power goes beyond that of first-order logic.

Such languages, though, are hardly usable in digital libraries, because their neg-
ative computational properties are inadequate to digital library requirements.

The Resource Description Frameowrk (RDF) [6] is a case in point. RDF al-
lows to express metadata records as statements having the described resource
as subject and metadata elements as properties. It also allows to express a cer-
tain amount of documentation knowledge, by allowing properties as subjects in
statements. However, as soon as the expressivity of the language goes beyond
that of RDF Schema [3] by including constructs from Description Logics, serious
computational problems arise. Indeed, the combination of RDF with Description
Logics yields the language OWL Full [7], which is undecidable in spite of the
decidability of its two constituents.

In this study, we tackle the problem of representing and reasoning about
both domain and documentation knoweldge by means of languages significantly
more expressive than RDF, but we follow a different approach than RDF. Our
approach is based on the simultaneous usage of two different logics: the object
logic devoted to represent domain knowledge, and the documentation logic (or
doc-logic for short) devoted to represent documentation knwoledge. We view the
resulting information system, which we call documentation system, as the back-
bone of a digital library, used for representing and reasoning about domain and
documentation knowledge both in an independent and in a joint way, the latter
option offering an innovative query functionality. As such, the present study ex-
tends the model presented in [8], which also allows to represent documentation
knowledge, but whose expressive power does not go beyond that of RDF.

In order to illustrate our approach in general terms, we choose the Description
Logic ALCO [1] as the object logic, relying on the abstract syntax of DLs, which
is more concise than the official OWL notation [4].

2 Motivation

Much of the activity of digital librarians revolves around metadata records. A
metadata record can be viewed as consisting of three separate parts: a descrip-
tion; a described object, the subject of the metadata record; and the attribution
of the description to the subject. A description is a set of features. For instance,
a description in a metadata record may consist of two features: (1) being a book
and (2) being titled “Waverley”. Each one of these features may be understood
as describing a set of resources. In particular, the former feature describes any-
thing that is a book, while the latter describes anything that is titled “Waverley”.
Taken together, the two features form a description that describes any resource
satisfying both of them. In Description Logics (DLs for short), descriptions are
represented by concepts, and in fact the two terms “description” and “concept”
are synonymous; we will follow the same convention. In the DL ALCO, the
above description may be represented by the concept Book u ∃Title.{Waverley}
The attribution of a description to a particular subject is the act of assert-
ing that that subject does indeed possess simultaneously all the features that
make up the description. This attribution produces a metadata record. In a

DL, attribution is realized by concept assertion, therefore in ALCO, the meta-
data record as a whole can be expressed by the following concept assertion:
b : (Book u ∃Title.{Waverley}) where b is the DL individual that stands for
the subject, a book in this case. In a DL knowledge base (KB for short), such
an assertion is placed in the ABox, the component of the KB holding factual
knowledge. The axioms of DLs can be used for modelling ontologies, understood
as vocabularies that establish, via terminological axioms, the meaning of the
concepts used in descriptions [5]. A terminological axiom in our example, could
be the following: Book v (∃Title.Literal u ∃Author.Person) stating that every
book has a title that is a literal, and an author that is a person. The ontology
underlying an ABox is placed in the other component of a DL KB, the TBox.
The discussion so far seems to indicate that DLs are adequate representation
languages for the knowledge contained in a digital library. Indeed, OWL [10],
the W3C recommendations that stand for DLs in the semantic web architec-
ture [2], is known and used in digital libraries. However, there is a fundamental
requirement of digital libraries that DLs are not able to capture. This require-
ment comes from the fact that documentation, a central activity in a digital
library, may be a recursive process; it may not be solely confined to the domain
of discourse, but it may also concern the descriptions and metadata records used
for documenting the resources of the domain of discourse. For example, a digital
librarian may need to represent the fact that a metadata record has a certain
provenance, (i.e., it has been created by a certain person, on a certain date, as a
result of a certain activity), or a certain degree of trustability; or that the record
is subject to a certain set of access restrictions, or to a certain billing policy.
In general, the same requirements arise in every information system that deals
with the documentation of the individuals of the domain of discourse, be these
individuals users, devices, or events.
In order to cope with the recursiveness of documentation, we argue that a knowl-
edge representation language is needed that offers descriptions as first class cit-
izens, that is as individuals on their own right, endowed with an identity and a
structure. In addition, the language in question should offer the machinery to
attribute a description to a certain individual, which may itself be a description,
thereby coping with the recursiveness of documentation. DLs, in spite of their
name, fall short of this requirement. They offer a rich machinery to create de-
scriptions, yet these descriptions are not denotable as individuals, and therefore
it is not possible to state any knowledge on them, other than assertions and
axioms. As such, the support that DLs offer to documentation is practically lim-
ited. The situation, however, is not unrecoverable. The machinery of DLs can
be used to remedy at this inconvenient, by slightly shifting the focus of repre-
sentation from the individuals, concepts and roles in the domain of discourse, to
descriptions made up of these. The shift is a form of reification and leads to a
logic, the doc-logic, that allows the expression of documentation knowledge, in
contrast to the object-logic that is used for representing domain knowledge.

In order to show how this can be done, in the next Section we introduce a doc-
logic corresponding to the object-logic ALCO. Our doc-logic will be doc-ALCO,
more simply called as alco.

3 Introducing alco

Suppose we wish to create the above description for the Waverley, and we also
want such description to be identified as the individual d. In order to achieve our
goal, in alco we describe the structure of d as the conjunction of two concepts,
which we choose to identify as d1 and d2. We use the alco role CCId (for Concept
Conjunction Identification) for associating the identifier of a conjunction to the
identifiers of the conjuncts, as follows: CCId(d, d1),CCId(d, d2) The role CCId
binds an identifier to a concept part, and therefore we will call it a binding role.

Next, we need to state that d1 identifies an atomic concept, say Book. For
this, we use the alco role ACId (for Atomic Concept Identification) as follows:
ACId(d1,Book) An assertion on the role ACId is in fact an assigment of an iden-
tifier to a whole concept, not just to a part of it, as in the case of binding roles;
therefore will call ACId a concept identifying role, or more simply an identify-
ing role. Of course, we could choose to use an atomic concept as an identifier
of itself (e.g., the alco individual Book as an identifier of the ALCO concept
Book) to make a doc-KB more readable; but we prefer to use different names in
order to avoid confusion. We also introduce in alco the role CNId (for Concept
Negation Identification) for identifying negation concepts as follows: CNId(d, e)
assigns the identifier d to the negation of the concept identified by e. Also CNId
is an identifying role.

As seen in the previous section, the title feature is expressed in ALCO as the
concept ∃Title.{Waverley}, known in the DL world as existential quantification.
In order to reduce this concept to something denotable as the individual d2, we
follow the same style followed above for concept conjunction, as follows:

– we introduce the identifying role ARId (for Atomic Role Identification), and
use it to identify the ALCO role Title as d3 by the assertion ARId(d3,Title);

– we introduce the identifying role SCId (for Singleton Concept Identification)
and use it to identify the ALCO singleton concept {Waverley} as d4 by the
assertion SCId(d4,Waverley);

– finally, we introduce two identifying roles ERId (for Role Identification in
an Existential Quantification) and ECId (for Concept Identification in an
Existential Quantification) and use them to bind d2 to its constituent parts
by the assertions: ERId(d2, d3),ECId(d2, d4)

Now we have completed the description of d, and can create the desired meta-
data record by attributing d to the book b that we want to describe. The obvious
way to state the association between d and b, is to introduce the alco role CAss
(for Concept Assertion) and use it as follows: CAss(d, b). The first argument of
a CAss assertion is always a description identifier, whereas the second argument

identifies the subject, which can be any resource. The CAss role allows to rep-
resent in alco an ALCO concept assertion. Yet, it is not adequate to document
metadata record, because there is no individual that denotes the resulting meta-
data record in a CAss assertion. An alternative way of proceeding is to coin a
name, say m, for the metadata record that we want to create, and then connect m
to d and b by using appropriate role assertions, namely: MRD(m, d),MRS(m, b).
There is an obvious relation between the just introduced roles and CAss. This
relation will be captured by an axiom, introduced in next Section.

So far we have simply used a rather cumbersome notation for expressing a
concept assertion. However, this notation has given us identifiers for the descrip-
tion and the metadata record that we have created, therefore we are in the posi-
tion of representing documentation knowledge about them. Suppose we want to
state that d was created by John. The latter feature can be expressed as a descrip-
tion identified by e as follows: ARId(e1,Author),SCId(e2, John),ERId(e, e1),ECId(e, e2)
The description e can be attributed to d by stating CAss(e, d).

Analogously we can document the metadata recordm by specifying a creation
time, a creation place and an author for it. We first create a description h for
the ALCO concept ∃Author .{Sue}, using the alco roles (for brevity, we do not
detail h); finally, we add the assertion: CAss(h,m) to the ABox of the doc-KB.

In order to make alco a full doc-logic, we need a role for representing (at
the doc-level) concept subsumptions in an object-TBox. To this end, we intro-
duce CSAx (for Concept Subsumption Axiom) with the intended meaning that:
CSAx(e, d) states that the concept identified by e is a sub-concept of the concept
identified by d.

4 Semantics

As a DL, alco has a well-defined semantics, based on the notion of interpretation.
This notion, however, turns out to license undesired situations. In this section
we discuss these undesired situations, and introduce axioms for ruling them out.
These axioms are intended to be in the TBox of any doc-KB, since they express
the semantics of the alco roles. In order to ease the expression of the axioms, we
introduce some atomic concepts:

– OInd, OACon and OARol, for representing individuals, atomic concepts and
atomic roles of the object-DL, respectively; these concepts are defined as
follows (as customary, ∃R abbreviates ∃R.>):

OInd ≡ ∃SCId−; OACon ≡ ∃ACId−; OARol ≡ ∃ARId−

– Concepts denoting the different types of concept and role identifiers:

AtomId ≡ ∃ACId; ConjId ≡ ∃CCId; NegId ≡ ∃CNId
SomeId ≡ ∃ERId; SingId ≡ ∃SCId; RoleId ≡ ∃ARId

– The concept ConcId denoting concept identifiers:

ConcId ≡ AtomId t ConjId t NegId t SomeId t SingId

Identification axioms These axioms capture the proper behaviour of the binding
and the identifying roles. First, identifying roles must behave like functions (in
OWL terms, they are functional object properties [9]).

(≥ 2 ACId) v ⊥; (≥ 2 ARId) v ⊥; (≥ 2 CNId) v ⊥
(≥ 2 ERId) v ⊥; (≥ 2 ECId) v ⊥; (≥ 2 SCId) v ⊥

Concerning the binding role CCId, every identifier used as a first argument in an
assertion on this role, must appear as a first argument also in at least another
assertion on the same role, because a conjunction has at least two conjuncts. We
express this condition as follows: (= 1 CCId) v ⊥.
Moreover, for every ERId(d, e) assertion, there must be exactly one ECId(d, e′)
assertion, for any individuals e, e′; and viceversa. In order to capture this con-
straint, which we call pairing constraint, it is not sufficient to include the ax-
iom ∃ERId ≡ ∃ECId in the TBox. This is due to the fact that a DL KB is
interpreted under the Open World Assumption. As a consequence, a KB whose
ABox contains only the assertion ERId(d,R) and whose TBox contains the axiom
∃ERId ≡ ∃ECId is not inconsistent; rather, the KB is understood as implicitly
stating that there exists some unknown individual z such that ECId(d, z) is true
in every interpretation. We cannot therefore capture the pairing constraint as a
TBox axiom; we will do it in a different way, illustrated in the next Section.

Finally, binding and identifying roles must all together satisfy the obvious
constraint that the domain of each one of them be disjoint from the domain of
each of the others, otherwise it may happen that the same identifier be used to
identify two concepts of different kinds. Assuming the above mentioned pairing
constraints are in place, we need to consider only one of ERId and ECId because
the domains of these two roles are made equivalent by the pairing constraint.
So, overall we need to declare mutual disjointness of the domain of six roles;
this requires fifteen axioms, all of the same type. For brevity, we only state the
five axioms stating the disjointness of atomic concept identifiers from the other
types of concept identifiers:

(AtomId u ConjId) v ⊥; (AtomId u NegId) v ⊥; (AtomId u SomeId) v ⊥;

(AtomId u SingId) v ⊥; (AtomId u RoleId) v ⊥

Syntactic axioms Syntactic axioms are those making sure that the syntax of the
object-DL concepts is properly captured by the assertions of the doc-DL.

A basic constraint of every DL, is that the symbols used for individuals,
atomic concepts and roles come from three disjoint alphabets.

(OACon u OARol) v ⊥; (OACon u OInd) v ⊥; (OARol u OInd) v ⊥

We also must make sure that concepts are properly formed in a doc-KB. To
exemplify, if in the doc-KB there is the assertion that d identifies a negation,
i.e., CNId(d, d1), then d1 must identify something, and a concept in particular.
The second part of this constraint can be captured via an axiom, imposing that

anything that appears as a second argument in a CNId assertion be a concept
identifier, and the same for all the other concept constructors. This can be done
by introducing the following axioms:

> v (∀CCId.ConcId); > v (∀CNId.ConcId); > v (∀ECId.ConcId)

However, the first part of the constraint, namely that there be in the KB an
explicit assertion binding d1 to a concept, cannot be formalized as an axiom,
again due to the Open World Assumption. Similarly to pairing constraints, we
have therefore to find a different way of expressing this kind of constraints, which
we call the syntactic constraints.

Metadata axioms Metadata axioms concern identifiers of metadata records. Our
intended notion of a metadata record requires that a metadata record concern
exactly one individual. In order to capture this intention, we introduce the follow-
ing axiom: (≥ 2 MRS) v ⊥. Moreover, we need to enforce a pairing constraint
for MRD and MRS, in the sense that for every assertion of the kind MRD(m, d),
we want the KB to contain at least one assertion of the form MRS(m, i), for
some individual i; and viceversa. For the reasons given above, also this kind
of pairing constraint has to be captured in a different way. Finally, we include
an axiom for capturing the previously mentioned relation between the role MRD
and MRS from one side, and the role CAss from the other side. In fact, every time
we use MRD and MRS for structuring a metadata record m, as in MRD(m, d)
and MRS(m, b), we are implicitly asserting that the d describes b, that is, that
CAss(d, b). In order to make this connection happen in a doc-KB, we introduce
the axiom:

MRD− ◦MRS v CAss (1)

where ◦ is the role composition operator. Notice that this axiom leaves the
freedom of inserting CAss assertions without the corresponding MRD and MRS
assertions. In other words, it is possible to create concept assertions that are not
metadata records, such as for instance the last assertion of the previous example.

Inference Axioms Inference axioms are required in order to model the proper
behavior of the CAss and the CSAx roles.

Concerning the CAss role and returning to our example, from the assertions
CAss(d, b) and CCId(d, d1) it should follow the assertion CAss(d1, b), because d
identifies a concept conjunction and d1 identifies one of the conjuncts. By the
same argument, it also should follow CCId(d, d2). More generally, modelling the
semantics of CAss means laying down all the rules that capture implied concept
assertions, ultimately leading to the axiomatization of (object-level) instance
checking in the doc-logic.

Likewise, modelling the semantics of the CSAx role amounts to axiomatize
(object-level) concept subsumption in the doc-logic. In other words, the doc-logic
does not only have to capture the syntax of the corresponding object-logic, but
also its inference mechanism.

The proof theory of DLs provides us with sound and complete inference
methods for both instance checking and submsumption. These methods can be
encoded in alco by means of axioms and semantic conditions, exactly in the same
way the syntax rules of the object-logic are encoded. As a result, the users of the
doc-KB would be able to exploit the implicit domain knowledge, typically for
performing ask operations. In particular, in order to check whether an individual
i is an instance of an object-concept c, it suffices to identify c via an individual
d and then ask whether CAss(d, i) logically follows from the doc-KB. The same
machinery also allows to do some consistency checking, for instance checking
whether an individual is an instance of the ⊥ concept, or of a contradictory
description. However, the price to be paid for achieving this goal would be very
high, as the encoding of inference would make the doc-logic very complex. In
what follows, we will present a much simpler method for attaining the same goal.

In order to preserve the semantics of the alco roles, we assume that the doc
TBox does not contain any axiom concerning these roles other than those given
above.

5 Strong consistency

Suppose we want to add to the KB the assertion that b is not a book. In alco,
the complext concept ¬Book must first be created and identified, say as the
individual f, by using the alco roles, and then f must be declared to be the
negation of the atomic concept Book. There is already an identifier for the latter
concept, namely d1, therefore all our replacement librarian must do, is to state:
CNId(f, d1) so that he can finally assert that b is an instance of f, by using the alco
role assertion: CAss(f, b). By adding the last two assertions to those introduced
in the Section 3, the consistency of the doc-KB is not broken. However, the
represented knowledge is clearly inconsistent from an intuitive point of view,
since b is asserted to be a book and not a book at the same time.

One way to capture pairing and syntacting constraints while at the same time
ruling out the last kind of inconsistency, is to try to transform a consistent doc-
KB into its corresponding object-KB. In order to do so, ALCO concepts must
be extracted from the assertions of the doc-ABox. If the doc-KB suffers from a
pairing or a syntactic inconsistency, then this extraction is not possible because
the assertions in the doc-ABox do not conform to the syntax of the doc-logic.
Otherwise the extraction is possible, and it allows to determine, for each con-
cept identifier d in the doc-ABox, the concept identified by d, that we denote as
νD(d) (ν(d) for simplicity). Once the function ν is determined, the doc-KB can
be transofrmed into its corresponding object-KB, and the obtained object-KB
can be checked for consistency. If this check succeeds, then the doc-KB satisfies
all the intuitive consistency criteria. This approach gives us a simple method
for checking consistency of the doc-KB. A further advantage of it, is that we
no longer need to model object level instance checking or subsumption as im-
plicit CAss and CSAx assertions, respectively; we can transform the doc-KB and
perform these inferences on the resulting object-KB, by relying on well-known

ν(d) if the doc-ABox contains

A ACId(d,A)
R ARId(d,R)
ν(e1) u . . . u ν(en) CCId(d, e1), . . . ,CCId(d, en), n maximal
¬ν(e) CNId(d, e)
∃ν(e).ν(f) ERId(d, e) and ECId(d, f)
{o} SCId(d, o)
ω otherwise

Table 1. Assignment of object-DL concepts to identifiers

algorithms. This is the route that we will follow in the rest of the paper. To this
end, we will first define how to determine the function ν from a given doc-KB
D. Based on the existence of ν(d) for each concept identifier d, we will define
a stronger consistency criterion for a doc-KB. Next, we state the transforma-
tion φ from a doc-KB to its corresponding object-KB and define the strongest
consistency criterion of a doc-KB based on the consistency of its corresponding
object-KB. The domain of the function ν is the set of concept identifiers:

dom(ν) = {d | (T,A) |= d : ConcId}

and can be efficiently determined as the set of identifiers that occur as first
arguments in a binding or in an identifying role assertion. For each d ∈ dom(ν),
the value of ν(d) is recursively defined in Table 1. By iterating this recursive
computation on dom(ν), the function ν can be efficiently computed.

Intuitively, if D = (T,A) is a consistent doc-KB, then exactly one of the
conditions on the right column of Table 1, excluding the last row, is met by the
ABox A, that is:

ν(d) 6= ω for all d ∈ dom(ν),

in other words ν is total on D. Based on this consideration we define a doc-KB
D = (T,A) to be fully consistent if ν(d) is total on D.

Let us now consider how to define the transformation φ. The DL alco of-
fers the roles CSAx and CAss for representing the terminological axioms and the
assertions of the object-KB, respectively. Therefore, it is natural to use asser-
tions on the former role in order to derive the axioms in the object-TBox, and
assertions on the latter role in order to derive the axioms in the object-ABox.
Formally, given a doc-KB D = (T,A), we have φ(D) = (T ,A) where:

T = {ν(d) v ν(e) | CSAx(d, e) ∈ A}
A = {i : ν(d) | (T,A) |= CAss(d, i)}

Some explanations are in order concerning the translation of CAss assertions.
Any such assertion has the form CAss(d, i) where d is a description identifier
and i is either a description identifier (such as e in the example above) or an
individual denoting any other kind of resource (such as the book b in the example

above). In the latter case, i does not have to be translated, as there would be
nothing to translate it into. In the former case, i is a concept identifier and d
another concept identifier that describes i. If we translate both identifiers into
the corresponding concepts, the result will be an assertion like C : D where both
C and D are object-concepts. In our example, the translation would look like:

(Book u ∃Ttile.{Waverley}) : ∃Author .{John}

The last expression reads “John created the description Book titled ‘Waverley’”,
which is precisely what we want to say. However, the above is not a valid assertion
in any DL, and this is the very reason why we set out to define the doc-DL.
Therefore, we have no choice but to translate only the second identifier. This
will result in the concept assertion: d : ∃Author .{John} This means that d
will appear in the object-KB, but its connection with the description that it
identifies (i.e., (Book u ∃Ttile.{Waverley})) is lost in the object-KB. Notice
that we require CAss(d, i) to be not only explicitly asserted, but also implicitly
present in the KB, typically as a consequence of the creation of a metadata
record. Table 2 shows the translation of the doc-KB of our example.

Based on these considerations, we say that a doc-KB D = (T,A) is strongly
consistent if D is fully consistent and φ(D) is a consistent ALCO KB. Moreover,
we define a documentation system S to be a pair S = 〈D,O〉 where D is a
doc-KB and O is an object-KB, such that O = φ(D).

6 Querying a documentation system

The two KBs in a DS can be queried individually, based on the kind of knwoledge
they store. As customary, we will denote the answer to an object query Co against
an object-KB O as Asko(Co, O), or simply Asko(Co), and define: Asko(Co) =
{ i | O |= i : Co} Likewise, we will use Askd(Cd) for denoting the result of asking
doc-query Cd to a doc-KB and define: Askd(Cd) = { i | O |= i : Cd}

doc-ABox ν object-ABox
CCId(d, d1), CCId(d, d2) d 7→ ν(d1) u ν(d2)
ACId(d1,Book) d1 7→ Book
ERId(d2, d3), ECId(d2, d4) d2 7→ ∃ν(d3).ν(d4)
ARId(d3,Title) d3 7→ Title
SCId(d4,Waverley) d4 7→ {Waverley}
CAss(d, b) b : Book u

∃Title.{Waverley}
MRD(m, d), MRS(m, b)
ERId(e,Author), ECId(e, e1) e 7→ ∃Author .ν(e1)
SCId(e1, John) e1 7→ {John}
CAss(e, d) d : ∃Author .{John}
ERId(h,Author), ECId(h, h1) h 7→ ∃Author .ν(h1)
SCId(h1,Sue) h1 7→ {Sue}
CAss(h,m) m : ∃Author .{Sue}

Table 2. Summary of the running example

There is a third category of queries, which we call mixed queries, that can be
asked to a DS. Mixed queries involve both domain and documentation knowl-
edge, and can be of one of two kinds: (1) mixed-object queries, asking for the
resourses of the object-KB that satisfy some property expressed in the doc-KB;
for instance, a mixed-object query may ask for the editions of the Waverley that
have been described by John; (2) mixed-doc queries, asking for the resourses of
the doc-KB that satisfy some property expressed in the object-KB; for instance,
a mixed-object query may ask for the metadata records of the Waverley that
have been created by Sue. In order to express mixed queries, we need to address
both the object- and the doc-KB. One way of doing so, is to use the operators
Asko and Askd within queries. Using these two operators, the editions of the
Waverley described by John can be expressed as follows:

Book u ∃Title.{Waverley} u Askd(∃CAss−.Asko(∃Author .{John}))

This is a concept denoting the individuals in the object-KB that are known to
be books titled Waverley, and that are known in the doc-KB to be described by
a description authored by John. Notice the double nesting of the Ask operator,
without which it would not be possible to express the query. This implies that
asking a doc-KB may require asking a object-KB. Let us now consider the mixed-
doc query asking for the metadata records of the Waverley authored by Sue.
Using the same ask operators introduced above, this query can be expressed as:

∃MRD.(∃CAss.Asko(∃Title.{Waverley})) uAsko(∃Author .{Sue})

This is a conjunction of two concepts: the first concept denotes the metadata
records whose description describes an individual known in the object-KB to
be titled Waverley. The second concept denotes the individuals known in the
object-KB to be authored by Sue.

The syntax of our query language, which we call Documentation Query Lan-
guage (DQL for short), is given by the following rules:

C ::= Co | Cd
Co ::= any object-concept | Askd(Cd)

Cd ::= any doc-concept | Asko(Co)

In order to give the semantics of DQL, the intepretations of the doc- and the
object-DL are combined in a rather obvious way. For simplicity, we omit such
specification, pointing out that it allows us to reduce query answering on a
DS to query answering on a single KB whose TBox is given by the union
of the TBoxes of the doc- and the object-KBs, and the same for the ABox.
In order to show the effects of this result, let us now return to our example
queries. From a semantical point of view, the former query above: Book u
∃Title.{Waverley} u Askd(∃CAss−.Asko(∃Author .{John})) stated against our
example DS in Table 2, is equivalent to the query Book u ∃Title.{Waverley} u
∃CAss−.∃Author .{John} stated against the union of the KBs shown in the first
and third column of the table. The union contains the assertions:

b : Book u ∃Title.{Waverley} CAss(d, b) d : ∃Author .{John}

clearly implying that b is in the answer to the query. Analogously, the latter query
above: ∃MRD.(∃CAss.Asko(∃Title.{Waverley}))uAsko(∃Author .{Sue}) stated
against S = (D,O), is equivalent to the query ∃MRD.(∃CAss.∃Title.{Waverley})u
∃Author .{Sue} stated against D ∪O. The assertions:

MRD(m, d) CAss(d, b) b : Book u ∃Title.{Waverley} m : ∃Author .{Sue}

are in D ∪O, therefore m is in the answer to the query.

7 Conclusions

We have presented documentation systems as constituents of digital libraries,
using description logics to represent and reason about domain and documen-
tation knowledge at the same time. In particular, the KB of a documentation
system consists of an object-KB and of a doc-KB. In the object-TBox, it is
possible to express domain ontologies as terminological axioms, whereas in the
object-ABox it is possible to express metadata records as DL concept assertions.
In the doc-ABox, it is possible to make assertions involving descriptions and the
metadata records of the object-KB Abox, thereby representing documentation
knowledge. As such, a documentation system significantly extends the expressive
capabilities of current digital libraries, mostly based on RDF.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2nd edition, 2003.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American Magazine, May 2001.

3. Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, WWW Consortium, February 2004.

4. Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. Technical report,
W3C Recommendation, 10 February 2004 25 February 2014.

5. N. Guarino. Formal ontology in information systems. In Proceedings of FOIS 98,
pages 3–15. IOS Press, Amsterdam, 1998. Amended version.

6. Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, WWW
Consortium, February 2004.

7. Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language
overview. W3C recommendation, W3C, February 2004.

8. Carlo Meghini, Nicolas Spyratos, Tsuyoshi Sugibuchi, and Jitao Yang. A model for
digital libraries and its translation to rdf. Journal on Data Semantics, 3(2):107–
139, June 2014. ISSN 1861-2032.

9. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontol-
ogy Language structural specification and functional-style syntax (second edition).
W3C recommendation, W3C, December 2012.

10. W3C OWL Working Group. OWL 2 Web Ontology Language document overview
(second edition). W3C recommendation, W3C, December 2012.

